Discovering Sequence Similarity by the Algorithmic Significance Method

نویسنده

  • Aleksandar Milosavljevic
چکیده

The minimal-length encoding approach is applied to define concept of sequence similarity. A sequence is defined to be similar to another sequence or to a set of keywords if it can be encoded in a small number of bits by taking advantage of common subwords. Minimal-length encoding of a sequence is computed in linear time, using a data compression algorithm that is based on a dynamic programming strategy and the directed acyclic word graph data structure. No assumptions about common word ("k-tuple") length are made in advance, and common words of any length are considered. The newly proposed algorithmic significance method provides an exact upper bound on the probability that sequence similarity has occurred by chance, thus eliminating the need for any arbitrary choice of similarity thresholds. Preliminary experiments indicate that a small number of keywords can positively identify a DNA sequence, which is extremely relevant in the context of partial sequencing by hybridization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence Comparisons via Algorithmic Mutual Information

One of the main problems in DNA and protein sequence comparisons is to decide whether observed similarity of two sequences should be explained by their relatedness or by mere presence of some shared internal structure, e.g., shared internal tandem repeats. The standard methods that are based on statistics or classical information theory can be used to discover either internal structure or mutua...

متن کامل

Parallel Genetic Algorithm Using Algorithmic Skeleton

Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons po...

متن کامل

A computational method to analyze the similarity of biological sequences under uncertainty

In this paper, we propose a new method to analyze the difference and similarity of biological sequences, based on the fuzzy sets theory. Considering the sequence order and some chemical and structural properties, we present a computational method to cluster the biological sequences. By some examples, we show that the new method is relatively easy and we are able to compare the sequences of arbi...

متن کامل

Inferring functional relationships of proteins from local sequence and spatial surface patterns.

We describe a novel approach for inferring functional relationship of proteins by detecting sequence and spatial patterns of protein surfaces. Well-formed concave surface regions in the form of pockets and voids are examined to identify similarity relationship that might be directly related to protein function. We first exhaustively identify and measure analytically all 910,379 surface pockets ...

متن کامل

Measuring the Similarity of Trajectories Using Fuzzy Theory

In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. International Conference on Intelligent Systems for Molecular Biology

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1993